RINCIPLES OF OPERATING SYSTEMS

LECTURE 8
Principles of

Operating Systems

CPU SCHEDULING

\ Scheduling Objectives

= Enforcement of fairness
0 in allocating resources to processes

= Enforcement of priorities
= Make best use of available system resources

= Give preference to processes holding key
resources.

= Give preference to processes exhibiting good
behavior.

= Degrade gracefully under heavy loads.

‘ Program Behavior Issues

= |/O boundedness
= short burst of CPU before blocking for 1/O

= CPU boundedness

= extensive use of CPU before blocking for I1/O

= Urgency and Priorities
= Frequency of preemption
= Process execution time

= Time sharing
= amount of execution time process has already received.

\ CPU and 170 Bursts

Maximum CPU utilization obtained with multiprogramming.

FAEQUENCY

load store
add store CPU burs 1

read from file
120

store increment

wait for I/O I/0 burst - l

index CPU burs &
write to file
wait for /O } I/O burst &
4q
load store
add store CPU burs 20 \\
read from file _
wait for VO 1/0O burst ¢ : Bu Fl.'E':"I? DURATIDHN " #
CPU Burst
Distribution.

CPU-I/O Burst Cycle

Process execution consists of a cycle of CPU execution
and a cycle of 1/0 wait.

Levels of Scheduling

= High Level Scheduling or Job Scheduling

= Selects jobs allowed to compete for CPU and other
system resources.

= Intermediate Level Scheduling or Medium
Term Scheduling

= Selects which jobs to temporarily suspend/resume to
smooth fluctuations in system load.

= Low Level (CPU) Scheduling or Dispatching

= Selects the ready process that will be assigned the
CPU.

= Ready Queue contains PCBs of processes.

Levels of Scheduling(cont.

Jobentry

Jobs
mmng fOF | sesmsmssssssssmsssmsssamamannnnnms
Inkilatlon

Jobvintiation High level schaduling

Processes
m“lng fﬂr AEEEINEEEEE ENEEENEEENNENENENEEENENTS
acthvation

Activate IRtermediate

Suspend javef seheduling

Active
processes

Dis patzh blocks Leow fevel schadhiling

tirneout

Running
processes

job completion

Completed
Jobs

\ CPU Scheduler

= Selects from among the processes in
memory that are ready to execute, and
allocates the CPU to one of them.

o Non-preemptive Scheduling

= Once CPU has been allocated to a process, the process
keeps the CPU until

0 Process exits OR
0 Process switches to waiting state
o Preemptive Scheduling

= Process can be interrupted and must release the CPU.
0 Need to coordinate access to shared data

'CPU Scheduling Decisions

= CPU scheduling decisions may take place when
a process:

0 switches from running state to waiting state
0 switches from running state to ready state
0 switches from waiting to ready

0 terminates

= Scheduling under 1 and 4 is non-preemptive.
= All other scheduling is preemptive.

CPU scheduling decisions

1/0O or
event
completion

dispatch 1/0 or

event wait

\ Dispatcher

= Dispatcher module gives control of the CPU
to the process selected by the short-term

scheduler. This involves:

O switching context

0 switching to user mode
O jumping to the proper location in the user program to restart
that program

= Dispatch Latency:
= time it takes for the dispatcher to stop one process and
start another running.

= Dispatcher must be fast.

\ Scheduling Criteria

= CPU Utllization

= Keep the CPU and other resources as busy as possible

= Throughput

m # of processes that complete their execution per time unit.

= Turnaround time

= amount of time to execute a particular process from its entry time.
= Waiting time

= amount of time a process has been waiting in the ready queue.

= Response Time (in a time-sharing environment)

= amount of time it takes from when a request was submitted until the
first response is produced, NOT output.

\ Optimization Criteria

= Maximize CPU Utilization
= Maximize Throughput

= Minimize Turnaround time
= Minimize Waiting time

= Minimize response time

'Observations: Scheduling Criteria

= Throughput vs. response time

o Throughput related to response time, but not identical:

= Minimizing response time will lead to more context switching than if
you only maximized throughput

o Two parts to maximizing throughput
= Minimize overhead (for example, context-switching)
= Efficient use of resources (CPU, disk, memory, etc)
= Fairness vs. response time
o Share CPU among users in some equitable way

o Fairness is not minimizing average response time:
= Better average response time by making system less fair

